人妻内射一区二区在线视频,日本精品少妇一区二区三区,日本sm/羞辱/调教/捆绑视频,久久国产精品成人片免费



Biochemical treatment technology for hot plating wastewater
Time:2012-10-22 14:01:47

       This biochemical method is a high-tech biological technology for treating mixed electroplating wastewater, and also a key technology for the clean production of electroplating heat industry. It has been declared the national patent. Biochemical method is superior to traditional chemical precipitation method, ion exchange method and electrolysis method in investment, operation, operation management, metal recovery, effluent quality and other aspects.


Technical Introduction:

       This biochemical method is a high-tech biological technology for treating mixed electroplating wastewater, and also a key technology for the clean production of electroplating heat industry. It has been declared the national patent. Biochemical method is superior to traditional chemical precipitation method, ion exchange method and electrolysis method in investment, operation, operation management, metal recovery, effluent quality and other aspects. Biochemical method and treatment of mixed electroplating wastewater is compared with the traditional physical and chemical process, the biggest difference between biological flocculants can continuously during the operation of proliferation, biological flocculating agent to remove the amount of metal ion is with biological flocculation increase with the increase of the dose, the traditional ion exchange process of ion exchange resin exchange capacity is limited, after saturated adsorption, can no longer remove metal ions. In chemical precipitation, the chemical body of the agent is also certain and there is no possibility of its own proliferation.


Technical Features:

Safety of composite functional bacteria:

       There have been no reports on the safety evaluation of microorganisms used in environmental protection at home and abroad. In this study, the safety of microbe insecticides, microbe feeds and biological agents was referred, and the theories of toxicology, microbiology, immunology, pathology, hematology and epidemiology were combined with electron microscopy technology for the first time to creatively study the safety of composite bacteria. Through the transformation of six kinds of animals and two kinds of plant bacteria in the body, the influence of bacteria on growth and heredity as well as the survival and killing methods of bacteria under different environmental conditions were studied, the influence of water discharged from purification engineering on animals and plants was tracked, and the human reaction to the bacteria was observed.


       The results showed that the bacteria were non-toxic, non-pathogenic, non-toxic and had no effect on the growth and heredity of plants. The discharge water of the bacteria purification project has no adverse effect on animals and plants, and the industrial application of bacteria is sanitary and convenient for management. The application of bacteria in the purification of heavy metal wastewater is safe, thus eliminating people's doubts about whether the industrial application of bacteria will bring new harm.


Technical principle and process flow:

       The process directly USES the microorganisms screened for a long time as the source of high-efficiency biological flocculant. Biological bacteria are an important source of natural organic polymer flocculants. For example, glucan of yeast cell wall, mannan, protein N - acetylglucamine and other components can be used as flocculant. Deacetylchitin (chitosan) is produced by alkaline hydrolysis. Chitosan contains active amino and hydroxyl groups and has strong flocculation ability for charged metal ions. In addition, the metabolites secreted by biological bacteria to the cells (bacterial membrane and mucilage) can also produce good flocculation effect on metal wastewater. Units with electroplating and hot plating wastewater need to be treated can also consult enterprises with similar sewage treatment experience on the service platform of Sewage Treasure project.


       The microbe micelles and biofilms of composite microbe flocculants are different in physical location distribution and structural connection during the formation process, so that the surface of the microbe micelles and biofilms of composite microbe flocculants are often negatively charged and have strong adsorption capacity for heavy metals. At the same time, the micelles (containing dead bacteria) can be embedded with metal ions and have good sedimentation performance. Thus the purification effect of electroplating heavy metal wastewater was improved.


       Composite microbial flocculant is by genetic material to move quickly to implement the entire biological community genetic adaptation of metal pollutants in wastewater, it through the positioning on the plasmid of related gene in the community move quickly to implement the whole wastewater microbial flocculant community genotype change, make it for encoding a metal ions have resistance or reduction reaction distribution of gene frequency is higher, so as to improve the purification rate of the metal.


       Microbial flocculant purification of metal ions is closely related to three levels of collaboration, namely in a certain period of time, microorganisms in the waste water of heavy metal ions have almost at the same time flocculation, electrostatic adsorption, enzyme catalytic conversion, complexation, embedding function and effect on PH buffer coprecipitation, made the metal ions are deposited waste water purification.


Process flow:

       The process of treating electroplating wastewater by biochemical method reasonably combines the advantages of pure biological method and chemical method. The design of electroplating wastewater treatment process by biochemical method is mainly based on the mechanism of removing heavy metals by a series of optimized biological flocculants, the concentration of heavy metal ions in electroplating wastewater and the daily amount of wastewater. The volume of bioreactor and bioreactor is determined by the concentration of metal ions and the amount of waste water. Chemical method in biochemical method only accounts for a small proportion. In the whole process, the chemical part plays a buffer, stability, equilibrium and other regulatory role on the whole high concentration of wastewater. The chemical dosage is only 1/4 to 1/5 of that of the traditional method, and the residue produced is also correspondingly less.


Application Scope:

       This microorganism method is a new and high biotechnology for electroplating wastewater treatment. It has the advantages of chemical precipitation method, electrolysis method and ion exchange method for electroplating wastewater treatment, and avoids the deficiency of these three methods. At the same time, it has the advantage of biomass "proliferation", and has implemented the microbial treatment engineering of this technology, with stable operation, safe and reliable, good treatment effect, and each technical index is lower than the national comprehensive sewage discharge standard. This technology is applicable to the new, old or large, medium and small electroplating plant wastewater treatment, also can be applied to chromite salt plant, mining, leather, printing and dyeing wastewater treatment.

Service hotline

020-36860788

WeChat

Feedback

Feedback

欧洲日本一线二线三线区本庄铃 | 一区二区高清国产在线视频| 国产精品激情av久久久青桔| 国产v亚洲v天堂无码久久久| 亚洲成av人片在线观l看福利1| 国产在线一区二区三区四区五区| 亚洲人成伊人成综合网中文| 精品人妻av一区二区三区| 日韩精品无码二三区a片| 人妻在卧室被老板疯狂进入| 成a人片亚洲日本久久| 亚洲中文字幕无码一区| 国产a∨国片精品青草视频| 一本一本久久aa综合精品| 无码国产欧美一区二区三区不卡| 3d动漫精品啪啪一区二区| 老熟女五十路乱子交尾中出一区| 亚洲精品国偷拍自产在线观看蜜桃| 久久久久99精品国产片| 欧美日韩亚洲国产精品| 中文毛片无遮挡高潮免费| 久久无码精品一一区二区三区| 日韩av午夜在线观看| 欧美精品一区二区精品久久| 少妇人妻综合久久中文字幕| 末发育娇小性色xxxxx视频| 欧美精品色婷婷五月综合| 亚洲偷偷自拍高清| 夜夜揉揉日日人人| 久久99亚洲精品久久频| 亚洲乱亚洲乱少妇无码99p| 国产成人亚洲影院在线播放| 久久综合噜噜激激的五月天 | 久草日b视频一二三区| 国产成本人片无码免费2020| 无码一区二区波多野结衣播放搜索| 国产精品乱子伦xxxx| 女人被男人躁得好爽免费视频| 强开少妇嫩苞又嫩又紧九色| 国产精品女同一区二区| 丰满岳乱妇久久久|